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Abstract

The research conducted under this project has led to the architecting of a novel
multi-agent framework to coordinate dynamic resource allocation. The research
approach has been developed for a specific problem of allocating in real-time,
trucks to “on-call” pickup requests, which is a common and important issue in
several parcel and goods movement industries.

Here, each entity including different trucks and the dispatcher is represented by an
autonomous and self-interested computational entity referred to as an agent. All on-
call pickup jobs are announced to the trucks by the dispatching agent. The truck
agents bid for the pickup order based on their knowledge about the current and
anticipated loads as well as the location of the announced pick-up job, and they
negotiate with the dispatching agent to win the pickup order. During negotiation,
the bids of the truck agents as well as counter-bids from the dispatching agent are
progressively revised until a bid value acceptable to both a truck agent as well as the
dispatcher is reached. At this point, the pick-up job is awarded to the truck.

This research has also led to the emergence of understandings on the effects of
some (heuristic) evaluation and pricing policies, as well as reinforcement
learning strategies on the overall performance of a coordination system. The
coordination system for resource allocation resulting from this research was
applied to a specific resource allocation scenario resembling local goods pickup
operations of a major company involved in commercial goods movement. Our
simulation studies, built based on an actual goods pickup environment, reveal
the potential for a multi-agent negotiation based method for real-time
coordination of pickup and other resource allocation operations.



1. INTRODUCTION

In crowded cities, well architected transportation and information infrastructure is
necessary for efficient goods movement. A recent draft of California Transportation
plan for goods movement, developed by CALTRANS, identifies capacity and
congestion, safety, geometric and surface conditions, and intermodal connections as
four major factors affecting the modern day trucking operations. The emerging
Information Technologies including mobile communications and Geographical
Information Systems, have not been effectively harnessed to deliver useful
engineering solutions to address the aforementioned issues in trucking operations
(Regan and Golob, 1999). Also, earlier research (Fischer et al., 1996) has determined
that performance of trucking operations can be significantly improved through

o optimal and real-time route generation and route guidance for truck movement,
and

e timely, dynamic and near-optimal allocation of trucks and other resources to
transport goods

In transportation literature, vehicle routing, pickup and delivery, and dial-a-ride
with various load and time constraints are typically modeled as deterministic or
stochastic optimization problems. These models are solved using “traditional”
mathematical programming methods as well as monolithic algorithms founded
thereon. This solution methodology does not meet the requirements of modern day
trucking operations where tasks are created dynamically, and the customers of
goods movement, and hence the pickup and delivery location, are spatio-temporally
distributed over a metropolitan landscape. The task allocation system must enable
customers to place orders without any concern about how various tasks are
allocated to different vehicles. Also, if a vehicle fails to execute a committed task,
another vehicle must complete the failed task. Finally, the task allocation must be
planned and executed in real-time, considering vehicle routing as well as various
possible scenarios.

These requirements make multi-agent systems (MAS) the most appropriate means to
coordinate task allocation among the distributed decision makers including
customers, vehicles and the trucking company offices. Besides, solutions arrived



through negotiations are viewed to be superior to those evolved from a centralized
task allocator.

For the past five years, several researchers have applied MAS to solve a few
common issues in the transportation domain. The work in MAS by Fischer (Fischer
et al., 1996) is one of the best known research efforts in cooperative transportation
scheduling, which is solved using Contact Net Protocol for task distribution among
companies and task assignment among vehicles. The approach, however, assumes a
deterministic scenario and ignores uncertainty. COSY/DASEDIS (Burmeister and
Sundermeyer, 1992; Burmeister et al., 1997) is an agent based work in traffic
simulation and guidance. Several agent applications are reported in air traffic
control (Ljunberg and Lucas, 1992) and negotiation among airlines for landing in a
airport (Sastry et al., 1995) using game theoretic approaches. Wellman presents a
market-oriented approach (WALRAS algorithm) to solve an atemporal and steady-

state multi-commodity problem, distributedly (Wellman, 1993).

The reported research is an attempt to employ the emerging technologies for

- providing effective and thoroughly validated methodologies for resource allocation
in trucking operations. The research conducted under this project has led to the
adaptation of a novel multi-agent framework to coordinate dynamic resource
allocation. The framework was founded on dynamic game theory (Basar and
Olsder, 1995) to evolve near-optimal, robust and tractable policies to allocate trucks
and other resources to move goods from point to point. The resource allocation
method resulting from this research was applied to a specific resource allocation
scenario resembling operations of UPS - a major company involved in commercial
goods movement. The remainder of this report is organized as follows: Section 2
presents an account of operations of UPS which shows that dynamic allocation of
resources may be commercially viable; Section 3 describes our research
methodology; Section 4 describes the essential architecture of the adapted MAS.
Descriptions of the main elements of our methodology (namely, the strategies for
coordination and learning) are presented in Sections 5 and 6, respectively. Details of
our computer simulation implementations as well as results from our simulation
experiments are presented in Sections 7 and 8.

2. MOTIVATION: SIMULATION STUDIES ON THE CURRENT PICK-UP
PRACTICE

United Parcel Service is the nation’s largest package transportation service. The
company currently has a regular client base in addition to the individuals who also
employ their services. Deliveries vary with individual customer needs and are
predominantly seasonal. Peak season is experienced towards the end of the year,
building up to the holiday season. Pickups however are fairly consistent, and the
drivers (known as service providers) make these pickups as a regular part of their
route. The route traced by a driver is determined by the type of area covered
(commercial or residential, or both). Optimal routes are developed keeping in mind



factors like one-ways streets and typical traffic conditions, and the like. Time
standards are developed for every aspect of the driver route, by routine meticulous
time studies and are specific to the coverage area.

For enhanced administrative ease, every city that UPS delivers to is fragmented into
sections known as loops. These loops are further subdivided into areas known as
units. It is typical to have as many as five or six drivers in any one loop. For the
remainder of the report, these units will be referred to as coverage areas. Typically,
there is only one driver within one coverage area. This assumption is maintained
throughout the analysis.

Every “center” is assigned a section of a city that is it’s designated coverage area.
The center management team comprises a Center Manager and typically three On-
Road Supervisors (as is the case with the Rodeo Center). The On Road Supervisors
are responsible for determining everything from staffing levels to constantly
maintaining contact (through the DIADs) with the drivers while they are on-road. It
is also their responsibility to respond to requests for unscheduled pickups for certain
air packages, that may arise while the drivers are already on their routes. These are
referred to as on-call air pickups.

Upon receiving a request for service, the on-road supervisors relay the pertinent
information to the drivers through appropriate wireless system integrated with the
Digital Information Acquisition

Devices (DIADs). This information includes the %ﬁg#@%
address of the request, the package type, number v LA =
of packages, the estimated time in which the et it ;
s TPy
package will be ready and also the closing time
of the establishment. All this information is
dispatched to the driver assigned to the unit in
which the request arises. The driver then has a
few minutes to respond to the dispatch. The two
alternatives available to the driver are to either
accept the dispatch, or the driver can also “kick-
back” the request whereupon the management
team will dispatch the pickup information to
another driver. The reasons for a kick-back may
include anything from insufficient capacity in
his /her package car, to personal reasons like
health or the need to finish the route quickly.

Figure 1. Illustration of loops in UPS
pickup operations

This method is not necessarily the best system.
The assignments are made based solely on the
driver’s coverage area and not necessarily on the
closest driver to the point of origin of the request for service. Additionally, the center
management team needs to know the approximate whereabouts of the drivers at all

? Figure 1




times of the day. This is a lot of information for an individual to remember with a
high level of fidelity on a regular basis. The containment of this amount of
knowledge with one individual can hamper smooth functioning of the center,
creating a knowledge gap too huge to surmount in some cases.

UPS, in an effort to streamline its operations, is always trying to reduce driver on-
road miles and consequently, the amount of time the drivers spend on the road
(known as windshield hours). There is a definite cost associated with every mile the
drivers traverse. Inefficient dispatching could result in hundreds of additional miles
a week. This figure extrapolated corporate-wide, amounts to millions of dollars.

To identify alternate methods that would make the assignment process more
efficient, a simulation model of the driver route was developed. The model differed
from the current practices in that the assignment of a pickup request was made on
the basis of the driver closest to the source of the request for service. Initial models
were limited to two adjacent loops. Priorities were assigned in a random manner to
simulate kickbacks. The results from this simulation were compared to a simulation
of the current practice where a single driver responds to any and all requests
originating within the loop. The latter case resulted in 19 missed pickups out of a
possible 100. The model involving the two drivers had a slighter lower number of
missed pickups of 16 out of a possible 100.

This served as the premise to expand the model wherein loops all around the study
loop were considered (i.e., 9 loops in all). The assignment was once again based on
the closest driver to the point of origin of the request for service. This time the results
were even more encouraging. The number of missed pickups was reduced to 14 out
of a possible 100. These results clearly indicate that there is potential for
improvement from the current method of package allocation. In addition to the
reduced number of missed pickups is the reduction in driver miles, which again
translates into cost savings. The study clearly establishes that the current system
leaves a lot to be desired, and the system as a whole could use some corrective
action.

3. RESEARCH METHODOLOGY

An existing MAS system, described in section 4, has been adapted for coordinating
pickup operations similar to what one encounters in UPS. Resource allocation is
achieved through negotiations among the various entities present in the scenario.
The overall methodology involves modeling the pickup scenario as a MAS
negotiation problem with learning. Here, each entity including different trucks and
the dispatcher is represented by an autonomous and self-interested computational
entity referred to as an agent. All on-call pickup jobs are announced to the trucks by
the dispatching agent. The truck agents bid for the pickup order based on their
knowledge about the current and anticipated loads as well as the location of the
announced pick-up job, and negotiate with the dispatching agent to win the pickup
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order. During negotiation, the bids of the truck agents as well as counter-bids from
the dispatching agent are progressively revised until a bid value acceptable to both a
truck agent as well as the dispatcher is reached. At this point, the pick-up job is
awarded to the truck.

The overall incentive for a truck driver, and overall profits for UPS, depends on the
number of on-call pickups made. We use the protocol described in Section 5 to
facilitate coordination among multiple agents in the scenario. The major stage in the
coordination involves how one evaluates proposals from various parties. The
evaluation method is presented in Section 6. We also developed a reinforcement
learning method to gradually improve the evaluation of proposals and submission
counterproposals as presented in Section 7.

4. MULTI-AGENT SYSTEMS ARCHITECTURE

We have adapted British Telecom’s freeware multi-agent system called ZEUS.
ZEUS'’s agent development tools provide basic components, communication
language and visualized administration user interface for ease of implementation [5]
[6]. Details of the architecture and the important modules therein are described in
the following two subsections.

Agent society structure

The context diagram (Figure 2) illustrates some of the issues involved in knowledge
level multi-agent collaboration. The central agent needs to perform a complex task
that requires it to collaborate with other agents. To do so, it uses the Facilitator
which identifies agents with the capabilities matching the requirements for
performing a particular aspect of a task, and an Agent Name Server to determine the
addresses of these agents. The inter-agent communication language called KQML is
used to communicate with the Agent Name Server, Facilitator and other agents. The
communication requires a shared representation and understanding of common
domain concepts, i.e. a common ontology.
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Individual agent structure
As Figure 3 depicts, the generic ZEUS agent includes the following components:

e a Mailbox that handles communications between the agent and other agents.

e a Message Handler that processes incoming messages from the Mailbox, dispatching
them to the relevant components of the agent.

e a Coordination Engine that makes decisions concerning the agent’s goals, e.g. how they
should be pursued, when to abandon them, etc. It is also responsible for coordinating
the agent’s interactions with other agents using its known coordination protocols and
strategies, e.g. the various auction protocols or the contract net protocol.

e an Acquaintance Database that describes the agent’s relationships with other agents in
the society, and its beliefs about the capabilities of those agents. The Coordination
Engine uses information contained in this database when making collaborative
arrangements with other agents.

o a Planner and Scheduler that plans the agent’s tasks based on decisions taken by the
Coordination Engine and the resources and task specifications available to the agent.

¢ a Resource Database that maintains a list of resources (referred to in this paper as facts)
that are owned by and available to the agent. The Resource Database also supports a



direct interface to external systems, which allows it to dynamically link to and utilize
proprietary databases.

an Ontology Database that stores the logical definition of each fact type — its legal
attributes, the range of legal values for each attribute, any constraints between attribute
values, and any relationships between the attributes of the fact and other facts.

a Task/Plan Database that provides logical descriptions of planning operators (or tasks)
known to the agent.

an Execution Monitor that maintains the agent’s internal clock, and starts, stops and
monitors tasks that have been scheduled for execution or termination by the
Planner/Scheduler. It also informs the Planner of successful and exceptional
terminating conditions of the tasks it is monitoring. In order to manage tasks, the
Execution Monitor also has a direct interface to external systems. It is assumed that the
domain realizations of tasks are external programs.

Outgoing "7l Incoming |
Messages Messages

A

Message

Mailbox - > Handler

4

Execution . ,| Co-ordination | Acquaintance
Monitor Engine Database

Planner and
Scheduler

External
Systems

Y Y

Task/Plan Resource
Database Database

A A

External
Database

Ontology
Database

Figure 3. Individual agent structure

When a message from another agent is received, the agent’s mailbox passes the
message to the Message Handler for processing. On receipt of the message, the
Message Handler interprets it as a request to achieve a goal. Hence, it forwards the

12



message to the Coordination Engine to determine whether to achieve the goal and if
s0, to devise and coordinate an appropriate plan of action.

The Coordination Engine decides to attempt the goal, and invokes the Planner to
construct a plan to achieve the goal. The Planner creates a plan for the goal, utilizing
action descriptions from its Plan Database, and reserving the resources that are
required by the plan and available in its Resource Database. However, the Planner
finds that there are some other resources that are required by the plan, but are not
available in its Resource Database, and which it cannot produce. Thus, it calls the
Coordination Engine to seek external assistance in producing those resources.

The Coordination Engine then begins to attempt to contract out the task of providing
the required resources at the required time. To do this, it checks its Acquaintance
Database for the names of other agents that it believes can produce the required
resources. Finding no acquaintance agents with the appropriate abilities, the Engine
uses the Mailbox to send a message to a known facilitator, requesting a list of all
“active” agents with the required abilities. On receipt of a reply from the facilitator,
the Mailbox forwards the reply message to the Coordination Engine (through the
Message Handler).

Now, given the list of agents with the needed abilities, the Coordination Engine first
stores this information in its Acquaintance Database, and then proceeds to send
messages to the agents, asking them to bid for a contract to produce the required
resource. Again the outgoing messages are sent through the Mailbox and their
replies returned to the Coordination Engine via the Mailbox and Message Handler.

Once all contractor agents have returned their bids for the tasks, or the reply
deadline has expired, the Coordination Engine passes the returned bids to the
Planner, which selects suitable contractors for providing the required resources. The
suitability of each bid depends on factors such as its cost, and how well it fits in with
the overall plan to achieve the original goal. With the bid selections made and the
plan completed, the Planner returns to the Coordination Engine a list contractor
agents to whom send contract award messages should be sent, and another list to
whom the Engine should send bid rejection messages.

However, before sending out the contract award and bid rejection messages, the
Coordination Engine first sends a message to the agent that originally asked it to
achieve the goal, informing the agent that it can perform the goal and the cost of
doing so. Next, the Engine waits for a response to its bid. If a favorable response is
received, it then sends out the contract award and bid rejection messages to its own
contractor agents and informs the Planner that the plan for the goal should be
executed when appropriate. If, on the other hand, an unfavorable response was
received, bid rejection messages are sent out to all contractor agents, and the Planner
is told to cancel the plan.




Once a scheduled plan is ready for execution, the Execution Monitor executes the
actions specified in the plan by invoking the external program declared in each
action description. If the entire plan is successfully executed, the final results are sent
through the Coordination Engine and Mailbox to the agent that requested the goal.

As can be seen from the use case scenario, the components of the Agent Component
Library work together to provide the necessary agent-level functionality. For
instance, the Mailbox and the Ontology Database facilitate communication. The
former provides agents with the ability to send and receive messages in a ‘standard’
format, whilst the latter enables each agent to understand what other agents
communicate to it. Once agents can communicate, we can raise the level of
abstraction to the coordination level (or social interaction), wherein bargaining and
negotiating is possible. This is realized via the Coordination Engine employing
various defined coordination protocols. It is also clear from this example that co-
operative problem solving between agents in task-oriented domains requires some
planning and scheduling capabilities.

5. COORDINATION STRATEGY

We have implemented a version of Contract Net Protocol (CNP) as our coordination
protocol. Figure 4 illustrates the relationship between protocols and interaction
strategies. At each state the agent may need to make decisions about how to behave
or respond to its current circumstances, these decisions are decided by strategies.
This is best illustrated with an example.

Consider an agent that needs to obtain a resource because it can not produce it
locally it must contact another agent to supply it. Hence the Initiator begins in the
Initialization state by analyzing its pickup requirements and evaluating how much it
is willing to pay for the resource and how quickly it needs it. Using the expertise
encoded into its tendering strategy it formulates a CFP message containing its
requirements, this is then broadcast to all potentially interested parties and the agent
moves into the Negotiation state to await responses.

The arrival of a CFP message causes Respondents (i.e., truck agents) to move into its
Initialization state. If a Respondent decides to reply (it is under no obligation to do
s0) it will move into its Negotiation state. The Respondent will now use its
evaluation strategy to formulate a counter-proposal to the initial tender, which is
then sent back to the Initiator in the form of a propose message. The Respondent
then moves into a wait state for a finite period of time to await a response. If no
response is received by the end of its time-out period the agent will terminate its
part of the conversation.

When the Initiator receives a proposal it is analyzed using its own evaluation
strategy. The evaluations can have one of the following three outcomes:

14



1. 1If the proposal is acceptable the conversation ends. The Initiator has not
committed itself however, and will send a message at some point in the future

either accepting or rejecting the offer.

2. If the proposal is not acceptable and the Initiator decides there is little point in

negotiating further, it can end the conversation immediately.

3. If the proposal is not acceptable the Initiator can send a new, modified CFP
message to the Respondent in question, whereupon it enters a wait state until a

response arrives or its time-out period passes.

For Outcome 3, the Respondent is awoken by the arrival of a new CFP message, which is
analyzed using its local evaluation strategy. This will cause the Respondent to do one of the

following:

e It will decide not to bid again and end its side of the conversation.

¢ It will formulate a new proposal message, return it to the Initiator, and move into a wait

state until a response arrives or it times out.

INITIATOR

Initialisation

Negotiation

STRATEGY STRATEGY

message: CFP

CFP

message:
PROPOSE

Initialisation Negotiation

message:

At afuture time an
ACCEPT or REJECT
message w ill be sent to

the Respondent

STRATEGY STRATEGY

decline FAIL

RESPONDENT

Figure 4. Illustration of the coordination protocol



In the specific context of package pickup operations, the overall strategy of a truck
agent upon receiving a proposal from the dispatcher on a pickup request may be
summarized as a flow chart shown in Figure 5. A pickup request is said to be in
conflict if accepting this request will lead to the violations of pickup deadlines with
other scheduled pickups. The algorithm to detect conflict is summarized in Figure 6.

Receive pickup proposal

Yes
Conflict with

scheduled?

S : Calculate cost based on - : e e
Reject distance & time slack

!

Negotiate

End
Figure 5. Flowchart summarizing the overall evaluation strategy of a truck agent

Here the top priority of each truck is to make all scheduled pickups in order to avoid
severe penalties, or, alternatively maximize incentives, which in turn are based on
the extent and quality of service. We did not explicitly consider penalties as part of
the cost structure of agents in our scenarios. The truck will bid for any on-call job
only after making sure that it does not violate any scheduled ones. Conflicts with
scheduled jobs are avoided by making sure that the travel to the on-call destination
and then to next scheduled destination will not violate the time deadline for the next
scheduled job.

After ensuring against any conflict, the agent proceeds with cost calculations for
tendering a counter-proposal. The cost is computed based on two major elements: (i)
distance to the pickup destination and (ii) the available slack (for the day). When a
truck receives a pickup job announcement, it first calculates time to reach the
specified on-call pickup location from its current (about to perform) pickup location.
The time will include both travel times as well as dwell times at intermediate stops
between the current and the announced pickup location that have not yet been
serviced by the truck. If the on-call pick location falls in the same loop, the job will be
inserted in the job-queue for pickup based on its location in the loop and the truck’s
current location, which will determine whether the truck is better-off making this
on-call pickup by persisting with the current counter-clockwise travel, or, if it should
to make a special clockwise trip to make this pickup). Then the agent will calculate
the expected end time which is an affine function of the available slack, i.e., larger
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the available slack, the smaller the value of expected end time. Then the distance and
the expected end time are combined to yield the minimum cost (or the reserve price)
for negotiation by assigning appropriate weights to each of the two elements. The
weights are selected based on the agent’s experience and requirement.

}

start_time = Expected time at which the truck will
complete the pickup of the current scheduled or
committed job

travel_timel = Expected time taken to reach the on-call
pickup location from the current (scheduled or
committed) pickup location

/*get to-destination-after making stops at all
locations where pickups have not been made*/

travel_time2 = Expected time taken to travel from the
on-call pickup location to the next scheduled
pickup location

dwell_time = Expected time to travel off the loop to and
from the current on-call pickup location, plus the
loading time at this location

total_time = travel_timel + dwell_time + travel_time2 }

Next_schedule_end_time = Time before which the next
scheduled pickup needs to be made

if ( total_time > Next schedule_end_time - start_time)
then, conflict and reject

else { calculate cost and negotiate}

Figure 6. Conflict detection algorithm

Based on the counter-proposals, the dispatcher awards the job to the truck that
makes the best offer, provided that the offer price is below the reserve price of the
dispatcher. The price may be selected using appropriate dynamic pricing algorithms.
However, we use a simple heuristic based on the overall slack available in the
network to compute the reserve price of a pickup request. During negotiations, the
truck agents and the dispatcher gradually will, respectively, decrement or increment
their offers till a contract is successfully made, or the entire negotiation process
terminates without a contract. We have developed a reinforcement learning
algorithm that will help in gradually improving the computation of decrement or
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increment of offers. After, awarding the pickup, the individual truck is responsible
for ensuring that the pickups are made within the specified deadline.

6. REINFORCEMENT LEARNING STRATEGY
Reinforcement Learning Modules

A reinforcement learning module underlies the overall coordination module of an
agent as depicted in Figure 7. The following three key components comprise the
reinforcement learning module:

Coordination, module

Reinforcement Learning medule

Figure 7. Relation between the coordination and the learning strategy modules

1. Reinforcement learner: Its responsibility includes conceiving the goal at the
initialization state to start negotiations, receiving and extracting contract
information from respondent agents for evaluation, formulating appropriate
counterproposals using the experience contained in the Experience handler, and
judging whether the goal is reached, based on which passing MESSAGE, OK or
FAIL feedback to the coordination module.

2. Experience handler: Its responsibility includes maintaining designated history of
recent deals, with attributes necessary for reinforcement learning, including cost
rate, time rate, reinforcement, etc., which will be defined in the following two
subsections.

3. Reinforcement handler: Its function is to evaluate how well the Reinforcement
learner has performed in a deal in terms of its price and time considerations.

When an evaluation strategy is initiated, the Reinforcement learner component is
invoked to determine the value of a counterproposal or decision to accept or reject
the deal, invoking the information contained in the Experience handler. When a deal
is closed, the Reinforcement handler is invoked to evaluate the effect of
reinforcement, and the Experience handler is invoked again to store the deal records.
In the following section, the details of our reinforcement methodology involving an
interaction among these components are described. The negotiation initiator and the
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respondents may have parallel strategies, hence we focus only on the performance of
the overall system relative to the initiator.

Reinforcement Learning Methodology

At the initialization state of each negotiation event, the agent invokes its Reinforcement
learner. Next, a goal object containing the following parameters is passed to the
Reinforcement learner:

Puin : the minimum price that the agent is instructed to start with upon receiving
respondent’s counterproposal

Prgx: the maximum price that the agent can accept

Png: the maximum absolute price difference between the agent’s and its
respondent’s prices, below which the agent will accept the offer

tmin: the time at which the negotiation starts

tmax: the final time before which the deal has to be closed

Then the agent will send out the first CFP as a MESSAGE. The negotiation between
initiator and respondent proceeds along the lines of a non-zero sum game as
described in Section 2 [9,10]. Upon receiving a counterproposal, the Reinforcement
learner will start its analysis by initializing the following parameters:

t: a system parameter identifying the current time
P: the price that agent is currently willing to pay. Initially, P = Pyin
P;: the requested price the respondent offered

tp = (P—Pmin) /(Pmax—Pmin)
This parameter, called the cost rate, identifies how well the agent performed from a cost
perspective on a particular deal

rr= (t - tmin)/ (tmax - tmin)

This parameter, called the time rate, identifies how well the agent performed from a time
perspective on a particular deal

R: the reinforcement received for this deal. a detailed algorithm to compute R is
presented in Section 3.3
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Then, Reinforcement learner will move to the evaluation phase. The following are
the different evaluation outcomes and decisions of an agent:

If Po<P+Png
=> the required price falls in the range of what the agent deems acceptable

» Reinforcement learner will firstly invoke the Reinforcement handler by
passing rp and rr to evaluate its Reinforcement for the current deal

> Reinforcement learner will invoke the Experience handler to record the rp,
rr and Reinforcement of this deal

»  An “OK” information will be returned to the respondent

If t2tmax
=> a sudden death decision has to be made
If Py < Prox
=> The price falls in the feasible range though not acceptable

» Reinforcement learner will firstly invoke the Reinforcement handler by
passing rp and rr to determine its Reinforcement

» Reinforcement learner will invoke the Experience handler to record the 7»,
rr and R of this deal

» An “OK” information will be returned to the respondent

If Respondent has sent a counterproposal and P,> P + Png

=> proposal is not acceptable but a new request for proposal with updated price might
facilitate an agreement

» Reinforcement learner will increase the current price with a calculated
step for sending out the counterproposal

(Detailed step calculation algorithms are presented in the next subsection)
> A “MESSAGE” information will be returned to the respondent
Else

i.e., the agent never received, in the required time range, any proposal with
an offer falling in the range of acceptable price range, hence the deal can not
be made
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» A “FAIL” information will be returned to the respondent

Computing reinforcement Increments

Price step Learning Algorithm

In this section the step learning algorithm is defined. Following parameters are
extensively used in the content of the step learning algorithm:

& : Time step from last interaction: dt = t — t(-1), initial value HO) =ty

e OP: Price increment at the current time

e 1. Average , of the previous rounds of transactions recorded by Experience handler
e 1: Average rr of the previous rounds of transactions recorded by Experience handler
e 2 :Value of r, at the best Reinforcement level recorded by Experience handler

e 17 :Value of rr at the best Reinforcement level recorded by Experience handler

When a counterproposal (offer price) from a respondent is not acceptable, the agent
will compute the price increment OP for sending the next counterproposal P ® as

P O = P
P O = pe-D) 4 §P

Two parameters must be determined before enforcing the learning increments:

(a) 8P_default, the default value, is obtained from the goal object

(b) OP_linear is calculated to make sure that the agent is able to close the deal before
tmaxis reached:
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* _p.
SP_linear = _ai_ﬁfm&_ml
~t

tmax min)

Next, the Reinforcement learner invokes the Experience handler to calculate 7', r?,

r2, r7. In this case the reinforcement learning step calculation involves a semi-
positive approach: i.e., the average value of the cost and time ratios under the best
and the average reinforcement conditions are used as

((rg +rY/2)* (P, — P

max min) * St

((rTB + rTA)/2)* (tmax —tmin)

8P _learned =

2)

Thus, an increment of &P_learned to the current P yields a value lying within the
specified price range that should be accepted, considering the elapsed time.

Reinforcement Shaping Algorithm

The major objectives of this reinforcement learning function are to: 1) reach best
achievable price 2) use shortest time, to reach an agreement. The task of an initiator
agent is to use the least amount of time to achieve a lowest price for procurement.
On the respondent side it will be expressed as use least time to achieve a highest
price. In order to simultaneously address the influence of time and cost factors on
the overall evaluation result, we specify R as follows:

R: Czu*(l‘rp)+Tzu*(1‘rT)
where Cy and Ty are constant weights. Thus the initiator maximizes R by
minimizing rp and r7.
7. IMPLEMENTATION DETAILS

Implementation of evaluation strategy

We implemented a hypothetical goods pickup scenario, similar to what one finds in
a company like UPS. Our scenario consisted of two adjoining loops where trucks
move as shown in Figure 8, and its visual representation as part of the implemented
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Zeus environment is shown in Figure 9. There are eight possible pickup locations in
each loop, namely locations 1-8 for Loop 1, and locations 11-18 for Loop 2. Travel
times between any two adjacent locations were assumed to be uniformly distributed
between 2.9-3.1 time units. Dwell time was assumed to be the same at all pick
locations and equal to 1 time unit. We randomly generated six scenarios consisting
of different on-call pickup requests occurring at random grid locations on the two
the loops, under different levels of available slack.

Figure 8. Schematicof the basic scenario

Table 1 summarizes the particulars of the generated six scenarios. Here, the
scheduled pickup locations for a truck are denoted by a binary string of 1’s and 0s,
where the leftmost bit refers to location 1 for Loop 1 and location 11 for Loop 2,
respectively. A zero at a particular position on the string denotes that the particular
position is a scheduled pickup location. For example, for the string 10110 ...,
corresponding to a truck assigned to Loop 1, pickups are scheduled at locations 1, 3
& 4, and no pickups are scheduled at locations 2 & 5, and so on.

Table 1. Summary of simulation experiments to study evaluation strategy

Scheduled pickup locations On-call pickup locations and times
Loop 1 (Locations 1] Loop2 (Locations
Scenarios 8) 11-18) Loop 1 Loop2
1 Light load 101011011 11011001 a. Location 7 @ time 12 | a. Location 17 @ time 12
Loop Slack =5 b. Location 1 @ time 23 | b. Location 16 @ time 27
time units
2 Heavy load 11111101 11011111 a. Location 7 @ time 12 ] a. Location 17 @ time 12
Loop Slack =5 b. Location 1 @ time 23 | b. Location 16 @ time 27
time units
3 Light load 101011011 11011001 a. Location 7 @ time 12 | a. Location 17 @ time 12
Loop Slack = 10 b. Location 4 @ time 17 | b. Location 16 @ time 27
time units c.Location 1 @ time 23
4 Heavy load 11111101 11011111 a. Location 7 @ time 12 | a. Location 17 @ time 12
Loop Slack =10 b. Location 4 @ time 17 | b. Location 16 @ time 27
time units c.Location 1 @ time 23
5 Light load 101011011 11011001 | a Location7 @ time 12 | a. Location 15 @ time 12
Loop Siack = 10 b. Location 4 @ time 17 | b. Location 18 @ time 27
" |time units c.Location 1 @ time 23 | c. Location 12 @ time 33
d.Location 3 @ time 31 | d. Location 15 @ time 39
6 Heavy load 11111101 11011111 a. Location 7 @ time 12 ] a. Location 15 @ time 12
Loop Slack =10 b. Location 4 @ time 17 ] b. Location 18 @ time 27
time units c.Location 1 @ time 23 ] c. Location 12 @ time 33
d.Location 3 @ time 31 | d. Location 15 @ time 39
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Scenarios 1, 3 & 5 have relatively few locations (about 62.5% of the possible pickup
locations) scheduled for pickup, and scenarios 2,4 & 6 have relatively large fraction
(~90%) of possible locations scheduled. The ratio of the number of on-call pickup
requests to the number of scheduled pickup requests is low (~25%) for scenarios
1&2, and medium (~35%) for scenarios 3&4, and high (~50%) for scenarios 5&6. For
each generated scenario, we first simulated the “as-is” case where no negotiation
occurs, and each truck is allowed to make only the pickups occurring in its
designated loop. Next we simulated the case where truck agents negotiate with the
dispatching agent to allocate trucks for on-call pickups, and trucks are free to make
pickups in any loop.

The ontology based on which the agents negotiate for allocating trucks for specific
on-call pickup requests is divided into two categories: abstract and entity. The
abstract ontology contains ontology that agents use during negotiation process, such

as money. The entity ontology is the domain-specific ontology items that agents
negotiate over. It defines the attributes of each pickup jobs. The attributes include
the location of pickup work, and the time deadline before which the pickup must be
made. A screen-shot showing the visualization of this ontology-base is shown in
Figure 10. Visual screen captures of various stages of the negotiation strategy are
shown in Figure 11.

Figure 9. Visualization of the implemented scenario within Zeus environment
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Figure 11. Visualization of the various stages of negotiation (a) initialization stage (b)
proposal stage (c) counter-proposal stage (d) awarding stage
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Implementation of learning strategy

We conducted extensive testing of the learning strategy in the foregoing simulation
environment. Since the initiator and the respondent strategy were parallel, our
analysis focused on the initiator. Through this, we measured the group behavior of
the overall environment. Reinforcement learning required multiple rounds of
simulations to arrive at a stable state. But due to some difficulties associated with
executing the large-scale simulations, we conducted 100 simulation runs at each
strategy. This means that the initiator has accumulated experience based on 100
deals it has made. We tracked the values of 5, rr and R for each deal. Following
cases were selected to study the effects of reinforcement learning:

1. No reinforcement: The initiator did not use any reinforcement. Instead it only used linear
evaluator strategy.

2. Reinforcement vs. Non-Reinforcement with cost weight (C,) =2 and time weight (7,,) =1:
Only the initiator was equipped with a reinforcement learning strategy. All other agents were
equipped with linear evaluator strategy.

3. Reinforcement vs. Non-Reinforcement with cost weight (C,) =2.5 and time weight (T,) =0.5:
Only the initiator was equipped with reinforcement learning strategy. All other agents were
equipped with linear evaluator strategy.

4. Reinforcement vs. Reinforcement with cost weight (C,) =2.5 and time weight (T,,) =0.5: All
agents were equipped with reinforcement learning strategy. So the initiator and respondents
would use their reinforcement strategies to compete with each other.

8. RESULTS

Results of evaluation strategy

From the simulation results (see Table 1) we found that dynamic allocation of trucks,
as opposed to a pre-assigned dispatching lead to a significant improvement of
overall efficiency of pickup operations. This translates to more incentives for truck
agents (perhaps truck drivers), and more income for the dispatcher from being able
to commit to more on-call jobs. Evidently, as we started to increase the available
slack, the trucks were able to make more on-call pickups irrespective of the
distribution of slack on each loop.
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Table 2. Summary of results of evaluation strategy simulations

No Negotiation With Negotiation
# of on call made Total Slack Remaining # of on call made Total Slack Remaining
Scenario | Loop 1 Loop 2 Loop 1 Loop 2 Loop 1 Loop 2 | Loop 1 Loop 2
1 0/2 1/2 5/5 5/5 1/2 2/2 5/5 5/5
2 0/2 0/2 5/5 5/5 1/2 1/2 5/5 5/5
3 0/3 1/2 10/10 10/10 1/2 2/2 10/10 6/10
4 073 072 10/10 10/70 172 272 10710 6/10
5 0/4 1/4 10/10 10/10 1/2 3/4 10/10 6/10
6 0/4 0/4 10/10 10/10 12 2/4 10/10 6/10

Results of learning strategy

The simulation results of our implmentation of our reinforcement strategy are

presented in the Figures 12-15, and the results after 100 completed transactions are.
summarized in Table 2.
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Table2. Summary of learning strategy implementation results with all agents equipped with learning, and
CW= 2.5, Tw, = 0.5

Cost Rate Time Rate Reinforcement
0.5584 0.0066 None

0.5339 0.0138 1.9190

0.5330 0.0069 1.6616

0.5500 0.0062 1.6219

In our simulations, tm:x was set to an arbitrarily large value. Therefore rr was very
small and all deals were generally closed long before the deadline. As one may
notice, rc, rr and R hover around 0.54, an insignificant value, and 1.7, respectively.
Furthermore, the values of rc, rr and R are all positive, which implies a postive
effect of reinforcement learning.

Judging from the simulation results (Figures 12-15), we can see that in linear
strategy result, r, was oscillating from the very beginning. There was no significant
time period where the final results seemed to converge to a certain value. For cases
with reinforcement learning, there was a oscillatory phase at the beginning and then
R values were close to a static equilibrium. This equilibrium slightly shifts
(increases) as the negotiation proceeds. But this trend, however, was not significant.
More simulations are required to demonstrate a substantial improvement in the
agent’s performance through the use of our simple reinforcement learning strategy.

Also, we found that the R values exhibited a tendency to converge faster to a near-
equilibrium as we increase Cw. When we increased Cyand decreased Tw, we found
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that rr was anomalously high for some cases, although the average values remained
the same. This could have resulted because of anomalously high completion times
in these cases. Compared to results from cases with no reinforcement, those that
used reinforcement learning consistently yielded lower rrand higher R. When both
the initiator and the respondents were equipped with reinforcement learning,
however, R values for the intiator seemed to oscillate around a lower value
compared to the value when only the initator was equipped with reinforcement
learning. From the foregoing results we can see that, in a group environment, if an
agent does not use a proactive learning strategy while some others do, the agent’s
performance tends to be adversely affected .

9. SUMMARY

In this report, we have investigated the effects of: (1) multi-agent negotiation, .
initiated based on real-time information, as well as (2) a simple reinforcement
learning strategy in the context of improving coordination of agents in a goods
pickup scenario. The agents used in our context are behavior based, and each
behavior is triggered by a certain kind of conditions. Our future extensions will
include clustering of jobs in agent coordination protocol. The result of binding
several related jobs together as one cluster may be different from negotiating on each
individual job separately and binding their results together. Further research in
agent learning scenarios is currently being investigated to extend our understanding
of coordination methodologies and multi-agent systems in a transit coordination
environment.

10.IMPLEMENTATION

Our simulation studies indicate that real-time coordination, perhaps using a multi-
agent systems approach, has the potential to improve the efficiency of goods pickup
operations. In fact, currently only one out of every three on-call pickup requests is
honored, although tremendous amount of slack is built into the schedules of truck
operators. The coordination methodology developed in this research can improve
the number of on-call pickups that can be made. However, further advances in
research as well as business practices are necessary in order to render real-time
distributed coordination commercially viable for trucking and goods movement
industries. Specific future advancements should include:

(a) Development of algorithms that can improve upon our algorithms for bidding,
cost computations, and bid evaluation, which underlie our negotiation
approach. Also, algorithms for near-optimal insertion of on-call pickup
requests can also be incorporated as part of the evaluation strategy. The
negotiations can be significantly improved through job-clustering, where we
can allocate multiple on-call pick requests whose locations are close to each
other to a single truck in order to save time for negotiations. The simple



algorithms used in this research for facilitating reinforcement learning can be
replaced by neural-network-based learning methods, which can facilitate fast

computations and real-time information retrieval.

(b) More widespread use of two-way communication devices, so that evaluations from

individual truck agents can be quickly communicated among other agents

and the dispatcher, thus leading to a dynamic negotiation process to
coordinate task allocation.

(c) Changes in business policies that can take advantage of the dynamic nature of

negotiations. For example, a company like UPS can allow trucks to make

pickups over multiple regions, and also create an incentive-based system for

truck drivers so as to maximize the service on on-call pickup requests.

Although most of the research results have been explain in reference to the operation

of a goods delivery company like UPS, most of the results are applicable to a range

of application domains. For example, a few trucking companies can take advantage

of automated negotiations to contract out jobs to company’s and /or independent
truck drivers. With a few minor modifications, the computational framework
including our evaluation strategy and reinforcement learning methods can be
adapted to these scenarios. A similar solution framework can be designed for
dispatching Caltrans trucks for road-side assistance.
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Appendix

SIMULATION OF ON-CALL-AIR PICKUP DISPATCH PROCESS AND
FAILURE ANALYSIS AT UPS

ABSTRACT

UPS being the world’s largest package distribution company, streamlining of all its
processes and operations is of paramount importance. Keeping in mind that UPSis a
worldwide corporation, any deviation from the optimal method results in copious amournts
of financial losses for the company as a whole. Corporate clients have established accounts
with UPS and these clients ship out packages on a regular basis. Picking up these packages
constitutes a major portion of the latter half of the driver’s workday. In addition to these
scheduled pickups are the pickup requests that originate based on individual needs. The
current method of assignment of these pickups to the drivers is in question, and a potentially
improved system is suggested. The feasibility of this proposed system is studied through a
simulation analysis and the findings of the study have been presented.

INTRODUCTION

United Parcel Service is the nations largest package transportation service.
For the time being at least, direct shipment is still the highest source of revenue for
UPS. The company currently has a regular client base in addition to the individuals
who also employ their services. Deliveries vary with individual customer needs and
are predominantly seasonal. Peak season is experienced towards the end of the year,
building up to the holiday season. Pickups however are fairly consistent, and the
drivers (known as service providers) make these pickups as a regular part of their
route. The route traced by a driver is determined by the type of area covered
(commercial or residential, or both). Optimal routes are developed keeping in mind
factors like one ways and typical traffic conditions, and the like. Time standards are
developed for every aspect of the driver route, by routine meticulous time studies
and are specific to the coverage area.

For enhanced administrative ease, every city that UPS delivers to is
fragmented into sections known as loops. These loops are further subdivided into
areas known as units. It is typical to have as many as five or six drivers in any one
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loop. For the remainder of the report, these units will be referred to as coverage
areas. Typically, there is only one driver within one coverage area. This assumption
is maintained throughout the analysis.

Package types have different priorities assigned to them. The Next Day Air packages
have the highest priority followed by the other package types. Ground deliveries in
residential areas have the lowest priority of all. Next Day Air packages are guaranteed by
10:30 am the day after the package is received. Another package type is the Next Day Air
Saver. These packages are guaranteed to be delivered by 12:00 pm the day after the package
has been received by UPS. The priority on this package type is high as well. Consequently,
the drivers spend the entire first half of every day making these commits and have little or
no time to make deliveries of any other package type. All or most pickups are made in the
afternoon, after all the high priority packages have been delivered. The afternoon route is
pretty much similar to the morning route. The drivers again follow trace to their regular

_pickup stops, while at the same time make any deliveries (mostly low priority packages) that
were not taken care of in the morning route.

The drivers are each given a DIAD (Delivery Information Acquisition Device)
that maintains a log of the driver’s delivery and pickup stop time and the locations
of each of these stops. These DIADS can receive dispatch information through the
wireless communication system currently existent, much like a paging service, with
marginal time delays. This device however, is not a real time two-way
communication device. Communication between the DIAD and the UPS computer
system takes place when the driver replaces the DIAD in the DIAD consol holder
located in the dashboard of the package car. Only critical information associated
with the high priority packages is communicated back to the center, like
made/failed delivery (of high priority packages) and the name of the package
recipient. All other information is uploaded at the end of the day when the divers
return to the center, where the DCS (DIAD Control System) aids in uploading all the
delivery and pickup information.

CURRENT OPERATIONAL SYSTEM AND PROBLEM STATEMENT

Every “center” is assigned a section of a city that is it’s designated coverage area. The
center management team comprises a Center Manager and typically three On-Road
Supervisors (as is the case with the Rodeo Center). The On Road Supervisors are responsible
for determining everything from staffing levels to constantly maintaining contact (through
the DIADs) with the drivers while they are on-road. It is also their responsibility to respond
to requests for unscheduled pickups for certain air packages, that may arise while the drivers
are already on their routes. These are referred to as on-call air pickups.

Upon receiving a request for service, the on-road supervisors relay the pertinent
information to the drivers. This information includes the address of the request, the package



type, number of packages, the estimated time in which the package will be ready and also
the closing time of the establishment. All this information is dispatched to the driver
assigned to the unit in which the request arises. The driver than has a few minutes to
respond to the dispatch. The two alternatives available to the driver are to either accept the
dispatch, or the driver can also “kick-back” the request whereupon the management team
will dispatch the pickup information to another driver. The reasons for a kick-back may
include anything from insufficient capacity in his/her package car, to personal reasons like
health or the need to finish the route quickly.

This method is not necessarily the best system. The assignments are made based
solely on the driver’s coverage area and not necessarily on the closest driver to the point of
origin of the request for service. Additionally, the center management team needs to know
the approximate whereabouts of the drivers at all times of the day. This is a lot of
information for an individual to have a high level of fidelity in reproducing on a regular
basis. The containment of this amount of knowledge with one individual often hampers
smooth functioning of the center, creating a knowledge gap too huge to surmount in some
cases.

UPS, in an effort to streamline its operations is always trying to reduce driver on-
road miles and consequently, the amount of time the drivers spend on the road (known as
windshield hours). There is a definite cost associated with every mile the drivers traverse.
Inefficient dispatching could result in hundreds of additional miles a week. This figure
extrapolated corporate wide results, literally in millions of dollars.

It remains within the scope of this study to determine if the dispatching process
currently being employed is indeed the most efficient, and if not, to lay the groundwork for
the development of an improved dispatching system for the on-call air packages.

APPROACH TO THE ANALYSIS

RELATIVE DISTANCES

The information that is uploaded into the UPS computer system every
evening about the driver delivery and pickup stops is saved into a database. This
information if called GD2 data. GD2 contains the details of every stop made by every driver.
This information covers both delivery and pickup information and also contains the details
for all package types. Probably the most important aspect of this information is the fact that
these data can be retrieved by a program called Driver Mapping, which can actually plot the
driver’s route, in the sequence of his/her stops, providing a great level of detail at each stop.
The driver trace is plotted over a map of the coverage area, and this proves a vital asset in
understanding what the driver does on road without actually having to go along with the
driver on his route. But, probably the greatest gains to be had from using the program comes
from the fact that the program has a very useful tool called the ruler. This tool allows one to
measure the distance (directly in miles) between any two points on the map.

DRIVER ROUTE SIMULATION AND PICKUP ASSIGNMENTS
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AWESIM®, developed by the Pritsker Corporation, is a very powerful simulation
software. An attempt is made here to simulate the driver’s daily trace and also to simulate
the assignment of packages based on the existing system and also a proposed new system.
The new system would not rely on any one person having to know the location of the driver
within a unit. Additionally, the simulation incorporates the possibility of the driver kicking
back the request for service, and the dispatch being reassigned to another driver. The
redirected dispatch is based on the concept of closest driver to the origin point of the pickup
request.

Before an in-depth description of the model is made, an understanding of the driver trace is
required.

LOOP 4 DRIVER 2
LOOP 3 DRIVER 1

Typically, every driver starts his/her route at the base of the loop and works
around the loop, eventually returning to the point of commencement. Pickups
mainly being done in the afternoon, the drivers often retrace the original morning
route with the appropriate changes being made to the route. In many cases, different
drivers will actually take different sides of the same streets. This may involve
traversing great distances just to make those pickups, just because it falls within the
designated coverage area.
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The chart shows the plot of the origin locations. By default, driver 2 would be
assigned all stops that occur on the left half of the plot (loop 4) and the remaining
would go to driver 1(loop 3). These figures were generated in a random fashion,
mimicking the actual fashion of origin of pickup requests.

REALITY MODELED

For the purpose of the simulation, and to avoid undue initial complications,
two adjacent units from units 3 and 4 were chosen. These units were of almost the
same size and were modeled as equal in most aspects. However, the difference in
the units lies in the time between stops and also the actual time for the stop itself.

UPS, through the years has developed allowances (time standards) for every
aspect of a drivers work day, including the two aspects that most concern the
simulation, namely the time allotted for a stop and the time it takes the driver to
reach the coverage area itself. Another important aspect of the simulation times,
namely the time between stops, was obtained by analyzing the GD2 data. The time
between stops was laboriously tabulated and analyzed. The frequency and bin size
were determined, and the time between stops was computed. The analysis showed
this factor to vary as an exponential distribution. This result was consistent with the
nature of the exponential distribution, which is typically used to model time
between events. The analysis was done for both units and the times were inputted
into the simulation.
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MODEL DESCRIPTION

The model is built to represent two loops and the drivers making their routes
within them. The time standards developed by UPS and the information gathered
from GD2 data were used in the simulation. The simulation was run for a period
mimicking the actual routes. The time at stops and the time between stops were also
incorporated into the model.

The drivers, as they traced their routes stop to make their regular pickups.
The on call air pickups are simulated by random occurrences of events that interrupt
the model and divert the entities (representing the drivers), to the assignment
portion of the model. The assignments are made, as mentioned earlier, on the basis
of the closest driver-to-the point-of origin of the request-for service. The-- - -
instantaneous distances are compared and the closer driver is assigned the pickup.
Also, before the pickup is assigned, the capacity constraints are examined. These
constraints are simulated by generating a random number that represents situations
wherein the driver accepts the pickup or if there is a kick back situation. As long as
the capacity of the driver who is closer to the point of origin of the call has not been
exceeded, that driver is assigned the pickup. In the event that the first driver’s
capacity has been exceeded, the load of the adjacent driver is checked, and as long as
this capacity is not exceeded as well, the pickup is “bumped” from the first driver to
the second (or vice-versa). The other condition under which a pickup can be bumped
from one driver to another is, as mentioned earlier, when a driver kickback occurs.

The third situation that could arise is that both drivers capacities have been
met or exceeded, in which case neither driver would be assigned the pickup. The
event would simply be marked as a missed pickup, and the entity is then rerouted to
its point of branching.

With the existing system of assigning packages at UPS, there is no structured form of
re-negotiating the assignments. Capacity constraints, though not always a big player in
the equation, are really not considered in the assigning process. Assignments are
made on the basis of calculated guesses, at best.

SIMULATION RESULTS AND INTERPRETATION

For the purpose of simulation and analysis, capacities for drivers 1 and 2 were
arbitrarily assigned. Driver 1 was assigned a capacity of three additional stops (over
and above the regular pickups he/she makes) and driver 2 was assigned a capacity
of five. When an assignment was to be made to either of these drivers, these capacity
figures were checked and barring excess, the assignments were made.



AWESIM generates a report of the activities of the simulation. The
interpretation of the results is of paramount importance. The number of entities
generated (pickup requests) varies depending on the position of the drivers within
the loop. The travel times being exponentially distributed, the work-day (number of
hours worked) will vary.

To maximize fidelity in the results, the simulation was run ten times. The
results, in all cases were consistent with the constraints incorporated into the model.

LABEL MEAN | STD NUM. OF MINIMU | MAXIMU
M M

VALU | DEVIATIO | OBSERVATO | VALUE VALUE
E N NS

TIME 138.46 | 57.483 110 32.072 234.301
5

TIME2 119.29 | 53.949 53 27418 225.125
0

STOPS_D1 3.000 |0.000 1 3.000 3.000

STPS_BUMPED_2 |2.000 | 1.000 3 1.000 3.000

D2

STOPS_D2 1.500 | 0.707 2 1.000 2.000

STPS_BUMPED_2 | 1.500 |0.707 2 1.000 2.000

D1

FAILED PICKUPS | 3.000 | 1.581 5 1.000 5.000

The final number of packages assigned to each driver, in all the cases does not
exceed the load capacity of the drivers. The total number of packages finally
assigned to each driver is the sum total of the packages directly assigned by virtue of
driver proximity, and those bumped to the driver because of either capacity or
personal priority constraint violation. The inference that can be drawn from the
entire simulation is that the current process of assignment being followed at UPS
leaves a lot to be desired, in terms of process optimization. Excessive driver miles are
driving up operational costs, which in turn drive up the service costs incurred by the
customer, and consequently provide openings in the package transportation market
to competitors.

To further explicate the aforementioned statements, for instance,
referring to the table or results below: (Results reproduced are from run 1 of 10)
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The AWESIM summary of results shows the time of occurrences of events, the stops
assigned to each driver and also the stops that have been ‘bumped’ from one driver
to the other. The bumped stop count is represented by the column
STPS_BUMPED _2D2 and STPS_BUMPED_2D1 which are to be read as ‘stops
bumped to driver 2’ and “stops bumped to driver 1’ respectively. These figures are
the crux of the entire simulation. What these numbers represent
(STPS_BUMPED_2D1 FOR INSTANCE) are the stops that were originally to be
assigned to driver 2, but because of capacity constraint violation, have been
reassigned to driver 1. This number represents the number of stops that would have
surely resulted in pickup service failures, had it not been for the re-allocation

process.

Another interesting case recorded by the simulation is as follows: This

_ particular example is from rum 8 of 10. The results are tabulated in the table below.
The interesting part about the results in this case is the assignment of stops to driver
1. As the table shows, in none of the cases was driver 1 closer to the point of origin of
the pickup location. In spite of this, there were 3 stops bumped to driver 1, after
driver 2 filled his load to capacity.

LABEL MEAN | STD NUM. OF MINIMU | MAXIMU
M M

VALU | DEVIATIO | OBSERVATO | VALUE VALUE
E N NS

TIME 139.38 | 59.843 96 31.105 233.717
9

TIME2 139.59 | 56.686 89 36.245 234.401
4

STOPS_D1 NO VALUES RECORDED

STPS_BUMPED_2 | 1.000 |0.000 1 1.000 1.000

D2

STOPS_D2 2500 |10291 4 1.000 4.000

STPS_BUMPED_2 | 2.000 |1.000 3 1.000 3.000

D1

FAILED PICKUPS | 4500 | 2.449 8 1.000 8.000

The above results just go to show that the assignment process, when not
solely based on the loop and unit concept, can actually produce results far superior
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in nature. Of course, this simulation is not the absolute answer, by any means. There
is a myriad of factors to be considered in the assignment process, ranging from
technical factors to human factors, only a few of which have been incorporated in
this simulation.

The results from this simulation were compared to a simulation involving a single
driver responding to any and all requests originating within the loop (current
method of assignment). The latter case resulted in 19 missed pickups out of a
possible 100. The model involving the two drivers had a slighter lower number of
missed pickups of 16 out of a possible 100.

This served as the premise to expand the model wherein loops all around the study
loop were considered i.e. 9 loops in all. The assignment was once again based on the
closest driver to the point of origin of the request for service. This time the results
were even more encotiraging. The number of missed pickups was reduced to 14 out
of a possible 100. These results clearly indicate that there is potential for
improvement from the current method of package allocation. In addition to the
reduced number of missed pickups is the reduction in driver miles, which again
translates into cost savings.

The study clearly establishes that the current system leaves a lot to be desired, and
the system as a whole could use some corrective action. Maybe, by incorporating
some kind of negotiation principle between the drivers and the center management
team, a more effective and efficient method of package pickup dispatch could be
implemented. Although the actual development of the negotiation process is out of
the scope of this work, the groundwork proving the feasibility and need for such a
system has been established. This improved method would be beneficial to the
company as a whole, and also to the customer that employs the services of the
company.
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